def nn_mlp(input_shape, params):
model = Sequential()
for i, layer_size in enumerate(params['layers']):
reg = regularizer(params)
if i == 0:
model.add(Dense(layer_size, init='he_normal', W_regularizer=reg, input_shape=input_shape))
else:
model.add(Dense(layer_size, init='he_normal', W_regularizer=reg))
if params.get('batch_norm', False):
model.add(BatchNormalization())
if 'dropouts' in params:
model.add(Dropout(params['dropouts'][i]))
model.add(PReLU())
model.add(Dense(1, init='he_normal'))
return model
评论列表
文章目录