def build(inp, dropout_rate=0.01):
enet = initial_block(inp)
enet = BatchNormalization(momentum=0.1)(enet) # enet_unpooling uses momentum of 0.1, keras default is 0.99
enet = PReLU(shared_axes=[1, 2])(enet)
enet = bottleneck(enet, 64, downsample=True, dropout_rate=dropout_rate) # bottleneck 1.0
for _ in range(4):
enet = bottleneck(enet, 64, dropout_rate=dropout_rate) # bottleneck 1.i
enet = bottleneck(enet, 128, downsample=True) # bottleneck 2.0
# bottleneck 2.x and 3.x
for _ in range(2):
enet = bottleneck(enet, 128) # bottleneck 2.1
enet = bottleneck(enet, 128, dilated=2) # bottleneck 2.2
enet = bottleneck(enet, 128, asymmetric=5) # bottleneck 2.3
enet = bottleneck(enet, 128, dilated=4) # bottleneck 2.4
enet = bottleneck(enet, 128) # bottleneck 2.5
enet = bottleneck(enet, 128, dilated=8) # bottleneck 2.6
enet = bottleneck(enet, 128, asymmetric=5) # bottleneck 2.7
enet = bottleneck(enet, 128, dilated=16) # bottleneck 2.8
return enet
评论列表
文章目录