def seqCNN_LReLU(n_flow=4, seq_len=3, map_height=32, map_width=32):
model=Sequential()
model.add(Convolution2D(64, 3, 3, input_shape=(n_flow*seq_len, map_height, map_width), border_mode='same'))
model.add(LeakyReLU(0.2))
# model.add(BatchNormalization())
model.add(Convolution2D(128, 3, 3, border_mode='same'))
model.add(LeakyReLU(0.2))
# model.add(BatchNormalization())
model.add(Convolution2D(64, 3, 3, border_mode='same'))
model.add(LeakyReLU(0.2))
# model.add(BatchNormalization())
model.add(Convolution2D(n_flow, 3, 3, border_mode='same'))
model.add(Activation('tanh'))
return model
评论列表
文章目录