def run_model(name):
if name == 'lsi':
lsi = models.LsiModel(corpus_gensim, id2word=vocab_gensim, num_topics=num_topics)
print('Saving lsi_model...')
lsi.save('exports/lsi.model')
print('lsi_model saved!')
# lsi_matrix = gensim.matutils.corpus2dense(lsi[corpus_gensim], len(lsi.projection.s)).T / lsi.projection.s
# print('Saving lsi_matrix...')
# pickle.dump(lsi_matrix, open('exports/lsi_matrix.p','wb'))
# print('lsi_matrix saved!')
elif name == 'lda':
# lda = models.LdaModel(corpus_gensim, id2word=vocab_gensim, num_topics=num_topics, passes=5)
lda = models.ldamulticore.LdaMulticore(corpus_gensim, id2word=vocab_gensim, num_topics=num_topics, passes=5)#, alpha='auto') #auto needs non multicore LDA
print('Saving lda_model...')
lda.save('exports/lda.model')
print('lda_model saved!')
# lda_matrix = gensim.matutils.corpus2dense(lda[corpus_gensim], lda.num_topics)
# print('Saving lda_matrix...')
# pickle.dump(lda_matrix, open('exports/lda_matrix.p','wb'))
# print('lda_matrix saved!')
gc.collect()
评论列表
文章目录