def load_save_word2vec_model(line_words, model_filename):
# ????
feature_size = 500
content_window = 5
freq_min_count = 3
# threads_num = 4
negative = 3 #best????hierarchical softmax??(??????????)????negative sampling??(??????)?
iter = 20
print("word2vec...")
tic = time.time()
if os.path.isfile(model_filename):
model = models.Word2Vec.load(model_filename)
print(model.vocab)
print("Loaded word2vec model")
else:
bigram_transformer = models.Phrases(line_words)
model = models.Word2Vec(bigram_transformer[line_words], size=feature_size, window=content_window, iter=iter, min_count=freq_min_count,negative=negative, workers=multiprocessing.cpu_count())
toc = time.time()
print("Word2vec completed! Elapsed time is %s." % (toc-tic))
model.save(model_filename)
# model.save_word2vec_format(save_model2, binary=False)
print("Word2vec Saved!")
return model
评论列表
文章目录