a3c.py 文件源码

python
阅读 27 收藏 0 点赞 0 评论 0

项目:deep_rl_vizdoom 作者: mihahauke 项目源码 文件源码
def create_architecture(self):
        self.vars.sequence_length = tf.placeholder(tf.int64, [1], name="sequence_length")

        fc_input = self.get_input_layers()

        fc1 = fully_connected(fc_input,
                              num_outputs=self.fc_units_num,
                              scope=self._name_scope + "/fc1")

        fc1_reshaped = tf.reshape(fc1, [1, -1, self.fc_units_num])
        self.recurrent_cells = self.ru_class(self._recurrent_units_num)
        state_c = tf.placeholder(tf.float32, [1, self.recurrent_cells.state_size.c], name="initial_lstm_state_c")
        state_h = tf.placeholder(tf.float32, [1, self.recurrent_cells.state_size.h], name="initial_lstm_state_h")
        self.vars.initial_network_state = LSTMStateTuple(state_c, state_h)
        rnn_outputs, self.ops.network_state = tf.nn.dynamic_rnn(self.recurrent_cells,
                                                                fc1_reshaped,
                                                                initial_state=self.vars.initial_network_state,
                                                                sequence_length=self.vars.sequence_length,
                                                                time_major=False,
                                                                scope=self._name_scope)
        reshaped_rnn_outputs = tf.reshape(rnn_outputs, [-1, self._recurrent_units_num])

        self.reset_state()
        self.ops.pi, self.ops.frameskip_pi, self.ops.v = self.policy_value_frameskip_layer(reshaped_rnn_outputs)
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号