def bi_lstm_layer(self,inputs):
if self.hidden_layer_num >1:
lstm_fw = rnn.MultiRNNCell([self.lstm_cell() for _ in range(self.hidden_layer_num)])
lstm_bw = rnn.MultiRNNCell([self.lstm_cell() for _ in range(self.hidden_layer_num)])
else:
lstm_fw = self.lstm_cell()
lstm_bw = self.lstm_cell()
outpus,_,_ = rnn.static_bidirectional_rnn(lstm_fw,lstm_bw,inputs,dtype=tf.float32)
features = tf.reshape(outpus,[-1,self.hidden_neural_size *2])
return features
评论列表
文章目录