sdca_ops.py 文件源码

python
阅读 16 收藏 0 点赞 0 评论 0

项目:lsdc 作者: febert 项目源码 文件源码
def unregularized_loss(self, examples):
    """Add operations to compute the loss (without the regularization loss).

    Args:
      examples: Examples to compute unregularized loss on.

    Returns:
      An Operation that computes mean (unregularized) loss for given set of
      examples.

    Raises:
      ValueError: if examples are not well defined.
    """
    self._assertSpecified(['example_labels', 'example_weights',
                           'sparse_features', 'dense_features'], examples)
    self._assertList(['sparse_features', 'dense_features'], examples)
    with name_scope('sdca/unregularized_loss'):
      predictions = math_ops.cast(
          self._linear_predictions(examples), dtypes.float64)
      labels = math_ops.cast(
          convert_to_tensor(examples['example_labels']), dtypes.float64)
      weights = math_ops.cast(
          convert_to_tensor(examples['example_weights']), dtypes.float64)

      if self._options['loss_type'] == 'logistic_loss':
        return math_ops.reduce_sum(math_ops.mul(
            sigmoid_cross_entropy_with_logits(predictions, labels),
            weights)) / math_ops.reduce_sum(weights)

      if self._options['loss_type'] in ['hinge_loss', 'smooth_hinge_loss']:
        # hinge_loss = max{0, 1 - y_i w*x} where y_i \in {-1, 1}. So, we need to
        # first convert 0/1 labels into -1/1 labels.
        all_ones = array_ops.ones_like(predictions)
        adjusted_labels = math_ops.sub(2 * labels, all_ones)
        # Tensor that contains (unweighted) error (hinge loss) per
        # example.
        error = nn_ops.relu(math_ops.sub(all_ones, math_ops.mul(adjusted_labels,
                                                                predictions)))
        weighted_error = math_ops.mul(error, weights)
        return math_ops.reduce_sum(weighted_error) / math_ops.reduce_sum(
            weights)

      # squared loss
      err = math_ops.sub(labels, predictions)

      weighted_squared_err = math_ops.mul(math_ops.square(err), weights)
      # SDCA squared loss function is sum(err^2) / (2*sum(weights))
      return (math_ops.reduce_sum(weighted_squared_err) /
              (2.0 * math_ops.reduce_sum(weights)))
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号