def test_nonlinear_programming(self):
vector_initial_value = [7., 7.]
vector = variables.Variable(vector_initial_value, 'vector')
# Make norm as small as possible.
loss = math_ops.reduce_sum(math_ops.square(vector))
# Ensure y = 1.
equalities = [vector[1] - 1.]
# Ensure x >= 1. Thus optimum should be at (1, 1).
inequalities = [vector[0] - 1.]
optimizer = external_optimizer.ScipyOptimizerInterface(
loss, equalities=equalities, inequalities=inequalities, method='SLSQP')
with self.test_session() as sess:
sess.run(variables.global_variables_initializer())
optimizer.minimize(sess)
self.assertAllClose(np.ones(2), sess.run(vector))
external_optimizer_test.py 文件源码
python
阅读 15
收藏 0
点赞 0
评论 0
评论列表
文章目录