loss_ops.py 文件源码

python
阅读 18 收藏 0 点赞 0 评论 0

项目:lsdc 作者: febert 项目源码 文件源码
def sigmoid_cross_entropy(logits, multi_class_labels, weight=1.0,
                          label_smoothing=0, scope=None):
  """Creates a cross-entropy loss using tf.nn.sigmoid_cross_entropy_with_logits.

  `weight` acts as a coefficient for the loss. If a scalar is provided,
  then the loss is simply scaled by the given value. If `weight` is a
  tensor of size [`batch_size`], then the loss weights apply to each
  corresponding sample.

  If `label_smoothing` is nonzero, smooth the labels towards 1/2:
      new_multiclass_labels = multiclass_labels * (1 - label_smoothing)
                              + 0.5 * label_smoothing

  Args:
    logits: [batch_size, num_classes] logits outputs of the network .
    multi_class_labels: [batch_size, num_classes] target labels in (0, 1).
    weight: Coefficients for the loss. The tensor must be a scalar, a tensor of
      shape [batch_size] or shape [batch_size, num_classes].
    label_smoothing: If greater than 0 then smooth the labels.
    scope: The scope for the operations performed in computing the loss.

  Returns:
    A scalar `Tensor` representing the loss value.

  Raises:
    ValueError: If the shape of `predictions` doesn't match that of `targets` or
      if the shape of `weight` is invalid or if `weight` is None.
  """
  with ops.name_scope(scope, "sigmoid_cross_entropy_loss",
                      [logits, multi_class_labels]):
    logits.get_shape().assert_is_compatible_with(multi_class_labels.get_shape())

    multi_class_labels = math_ops.cast(multi_class_labels, logits.dtype)

    if label_smoothing > 0:
      multi_class_labels = (multi_class_labels * (1 - label_smoothing) +
                            0.5 * label_smoothing)

    losses = nn.sigmoid_cross_entropy_with_logits(logits, multi_class_labels,
                                                  name="xentropy")
    return compute_weighted_loss(losses, weight)
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号