def padding_mask(sequence_lengths, padded_length):
"""Creates a mask used for calculating losses with padded input.
Args:
sequence_lengths: A `Tensor` of shape `[batch_size]` containing the unpadded
length of each sequence.
padded_length: A scalar `Tensor` indicating the length of the sequences
after padding
Returns:
A boolean `Tensor` M of shape `[batch_size, padded_length]` where
`M[i, j] == True` when `lengths[i] > j`.
"""
range_tensor = math_ops.range(padded_length)
return math_ops.less(array_ops.expand_dims(range_tensor, 0),
array_ops.expand_dims(sequence_lengths, 1))
评论列表
文章目录