sampling_ops.py 文件源码

python
阅读 21 收藏 0 点赞 0 评论 0

项目:lsdc 作者: febert 项目源码 文件源码
def _conditional_batch(tensors, accept_prob, batch_size, queue_threads=10):
  """Conditionally enqueue tensors based on accept_prob.

  Specifically, enqueue the element if accept_prob > rand_unif([0, 1]).

  Args:
      tensors: List of tensors to enqueue.
      accept_prob: Acceptance probability per example.
      batch_size: Size of batch.
      queue_threads: Number of threads enqueuing in the final queue.

  Returns:
      List of batched tensors.

  Raises:
      ValueError: `accept_prob` isn't 0D.
  """
  accept_prob.get_shape().assert_has_rank(0)
  # Determine shapes and types of to-be-enqueued-tensors.
  shapes_list = []
  dtypes_list = []
  for tensor in tensors:
    cur_shape = tensor.get_shape()
    cur_shape.assert_is_fully_defined()
    shapes_list.append(cur_shape)
    dtypes_list.append(tensor.dtype)

  final_q = data_flow_ops.FIFOQueue(capacity=batch_size,
                                    shapes=shapes_list,
                                    dtypes=dtypes_list,
                                    name='batched_queue')
  logging_ops.scalar_summary('queue/%s/size' % final_q.name, final_q.size())

  # Conditionally enqueue.
  # Reshape enqueue op to match no_op's shape.
  eq_tf = math_ops.less(random_ops.random_uniform([]), accept_prob)
  conditional_enqueue = control_flow_ops.cond(
      eq_tf,
      lambda: final_q.enqueue(tensors),
      control_flow_ops.no_op)
  queue_runner.add_queue_runner(queue_runner.QueueRunner(
      final_q, [conditional_enqueue] * queue_threads))

  out_tensor = final_q.dequeue_many(batch_size)
  # Queues return a single tensor if the list of enqued tensors is one. Since we
  # want the type to be the same in all cases, always return a list.
  if isinstance(out_tensor, ops.Tensor):
    out_tensor = [out_tensor]

  return out_tensor
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号