def testGetLogitsAndProbsProbabilityValidateArgsMultidimensional(self):
p = np.array([[0.3, 0.4, 0.3], [0.1, 0.5, 0.4]], dtype=np.float32)
# Component less than 0. Still sums to 1.
p2 = np.array([[-.3, 0.4, 0.9], [0.1, 0.5, 0.4]], dtype=np.float32)
# Component greater than 1. Does not sum to 1.
p3 = np.array([[1.3, 0.0, 0.0], [0.1, 0.5, 0.4]], dtype=np.float32)
# Does not sum to 1.
p4 = np.array([[1.1, 0.3, 0.4], [0.1, 0.5, 0.4]], dtype=np.float32)
with self.test_session():
_, prob = distribution_util.get_logits_and_probs(
probs=p, multidimensional=True)
prob.eval()
with self.assertRaisesOpError("Condition x >= 0"):
_, prob = distribution_util.get_logits_and_probs(
probs=p2, multidimensional=True, validate_args=True)
prob.eval()
_, prob = distribution_util.get_logits_and_probs(
probs=p2, multidimensional=True, validate_args=False)
prob.eval()
with self.assertRaisesOpError(
"(probs has components greater than 1|probs does not sum to 1)"):
_, prob = distribution_util.get_logits_and_probs(
probs=p3, multidimensional=True, validate_args=True)
prob.eval()
_, prob = distribution_util.get_logits_and_probs(
probs=p3, multidimensional=True, validate_args=False)
prob.eval()
with self.assertRaisesOpError("probs does not sum to 1"):
_, prob = distribution_util.get_logits_and_probs(
probs=p4, multidimensional=True, validate_args=True)
prob.eval()
_, prob = distribution_util.get_logits_and_probs(
probs=p4, multidimensional=True, validate_args=False)
prob.eval()
distribution_util_test.py 文件源码
python
阅读 24
收藏 0
点赞 0
评论 0
评论列表
文章目录