estimator_test.py 文件源码

python
阅读 23 收藏 0 点赞 0 评论 0

项目:DeepLearning_VirtualReality_BigData_Project 作者: rashmitripathi 项目源码 文件源码
def _build_estimator_for_export_tests(tmpdir):

  def _input_fn():
    iris = base.load_iris()
    return {
        'feature': constant_op.constant(
            iris.data, dtype=dtypes.float32)
    }, constant_op.constant(
        iris.target, shape=[150], dtype=dtypes.int32)

  feature_columns = [
      feature_column_lib.real_valued_column(
          'feature', dimension=4)
  ]

  est = linear.LinearRegressor(feature_columns)
  est.fit(input_fn=_input_fn, steps=20)

  feature_spec = feature_column_lib.create_feature_spec_for_parsing(
      feature_columns)
  serving_input_fn = input_fn_utils.build_parsing_serving_input_fn(feature_spec)

  # hack in an op that uses an asset, in order to test asset export.
  # this is not actually valid, of course.
  def serving_input_fn_with_asset():
    features, labels, inputs = serving_input_fn()

    vocab_file_name = os.path.join(tmpdir, 'my_vocab_file')
    vocab_file = gfile.GFile(vocab_file_name, mode='w')
    vocab_file.write(VOCAB_FILE_CONTENT)
    vocab_file.close()
    hashtable = lookup.HashTable(
        lookup.TextFileStringTableInitializer(vocab_file_name), 'x')
    features['bogus_lookup'] = hashtable.lookup(
        math_ops.to_int64(features['feature']))

    return input_fn_utils.InputFnOps(features, labels, inputs)

  return est, serving_input_fn_with_asset
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号