def _logistic_regression_model_fn(features, labels, mode):
_ = mode
logits = layers.linear(
features,
1,
weights_initializer=init_ops.zeros_initializer(),
# Intentionally uses really awful initial values so that
# AUC/precision/recall/etc will change meaningfully even on a toy dataset.
biases_initializer=init_ops.constant_initializer(-10.0))
predictions = math_ops.sigmoid(logits)
loss = loss_ops.sigmoid_cross_entropy(logits, labels)
train_op = optimizers.optimize_loss(
loss, variables.get_global_step(), optimizer='Adagrad', learning_rate=0.1)
return predictions, loss, train_op
logistic_regressor_test.py 文件源码
python
阅读 19
收藏 0
点赞 0
评论 0
评论列表
文章目录