def call(self, inputs, state):
"""Gated recurrent unit (GRU) with nunits cells."""
with vs.variable_scope("gates"): # Reset gate and update gate.
# We start with bias of 1.0 to not reset and not update.
bias_ones = self._bias_initializer
if self._bias_initializer is None:
dtype = [a.dtype for a in [inputs, state]][0]
bias_ones = init_ops.constant_initializer(1.0, dtype=dtype)
value = math_ops.sigmoid(
linear([inputs, state], 2 * self._num_units, True, bias_ones,
self._kernel_initializer))
r, u = array_ops.split(value=value, num_or_size_splits=2, axis=1)
with vs.variable_scope("candidate"):
c = self._activation(
linear([inputs, r * state], self._num_units, True,
self._bias_initializer, self._kernel_initializer))
# recurrent dropout as proposed in https://arxiv.org/pdf/1603.05118.pdf (currently disabled)
#if self._is_training and Params.dropout is not None:
#c = tf.nn.dropout(c, 1 - Params.dropout)
new_h = u * state + (1 - u) * c
return new_h, new_h
评论列表
文章目录