sdca_ops.py 文件源码

python
阅读 20 收藏 0 点赞 0 评论 0

项目:DeepLearning_VirtualReality_BigData_Project 作者: rashmitripathi 项目源码 文件源码
def _linear_predictions(self, examples):
    """Returns predictions of the form w*x."""
    with name_scope('sdca/prediction'):
      sparse_variables = self._convert_n_to_tensor(self._variables[
          'sparse_features_weights'])
      result = 0.0
      for sfc, sv in zip(examples['sparse_features'], sparse_variables):
        # TODO(sibyl-Aix6ihai): following does not take care of missing features.
        result += math_ops.segment_sum(
            math_ops.multiply(
                array_ops.gather(sv, sfc.feature_indices), sfc.feature_values),
            sfc.example_indices)
      dense_features = self._convert_n_to_tensor(examples['dense_features'])
      dense_variables = self._convert_n_to_tensor(self._variables[
          'dense_features_weights'])

      for i in range(len(dense_variables)):
        result += math_ops.matmul(dense_features[i],
                                  array_ops.expand_dims(dense_variables[i], -1))

    # Reshaping to allow shape inference at graph construction time.
    return array_ops.reshape(result, [-1])
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号