def shuffle_join(tensor_list_list, capacity,
min_ad, phase):
name = 'shuffel_input'
types = _dtypes(tensor_list_list)
queue = data_flow_ops.RandomShuffleQueue(
capacity=capacity, min_after_dequeue=min_ad,
dtypes=types)
# Build enque Operations
_enqueue_join(queue, tensor_list_list)
full = (math_ops.cast(math_ops.maximum(0, queue.size() - min_ad),
dtypes.float32) * (1. / (capacity - min_ad)))
# Note that name contains a '/' at the end so we intentionally do not place
# a '/' after %s below.
summary_name = (
"queue/%s/fraction_over_%d_of_%d_full" %
(name + '_' + phase, min_ad, capacity - min_ad))
tf.summary.scalar(summary_name, full)
dequeued = queue.dequeue(name='shuffel_deqeue')
# dequeued = _deserialize_sparse_tensors(dequeued, sparse_info)
return dequeued
评论列表
文章目录