def extract_data(filename, num_images):
imgs = []
stars = []
ridges = []
print("loading, please wait")
for i in range(1, num_images+1):
imageid = 'satImage_'+ '%.3d' % i
##Load images
for j in range(8):
image_filename = 'training_big/Images/' + imageid + "_rota"+str(np.int(j))+".png"
if os.path.isfile(image_filename):
img = mpimg.imread(image_filename)
n1,n2,n = img.shape
imgs.append(img.astype(np.float32, copy=False))
else:
print ('File ' + image_filename + ' does not exist')
##Format images
num_images = len(imgs)
IMG_WIDTH = imgs[0].shape[0]
IMG_HEIGHT = imgs[0].shape[1]
N_PATCHES_PER_IMAGE = (IMG_WIDTH/IMG_PATCH_SIZE)*(IMG_HEIGHT/IMG_PATCH_SIZE)
img_patches = [img_crop(imgs[i], IMG_PATCH_SIZE, IMG_PATCH_SIZE) for i in range(num_images)]
data = [img_patches[i][j] for i in range(len(img_patches)) for j in range(len(img_patches[i]))]
return np.asarray(data)
# Assign a label to a patch v
Training_run.py 文件源码
python
阅读 33
收藏 0
点赞 0
评论 0
评论列表
文章目录