def extract_labels(filename_base, num_images, num_of_transformations=6, patch_size=const.IMG_PATCH_SIZE,
patch_stride=const.IMG_PATCH_STRIDE):
"""Extract the labels into a 1-hot matrix [image index, label index]."""
gt_imgs = []
for i in range(1, num_images+1):
imageid = "satImage_%.3d" % i
image_filename = filename_base + imageid + ".png"
if os.path.isfile(image_filename):
print('Loading ' + image_filename)
img = mpimg.imread(image_filename)
gt_imgs.append(img)
else:
print('File ' + image_filename + ' does not exist')
num_images = len(gt_imgs)
print('Extracting patches...')
gt_patches = [pem.label_img_crop(gt_imgs[i], patch_size, patch_stride, num_of_transformations)
for i in range(num_images)]
data = np.asarray([gt_patches[i][j] for i in range(len(gt_patches)) for j in range(len(gt_patches[i]))])
labels = np.asarray([value_to_class(np.mean(data[i])) for i in range(len(data))])
print(str(len(data)) + ' label patches extracted.')
# Convert to dense 1-hot representation.
return labels.astype(np.float32)
data_loading_module.py 文件源码
python
阅读 20
收藏 0
点赞 0
评论 0
评论列表
文章目录