def extract_labels(filename, num_images):
gt_imgs = []
for i in range(1, num_images+1):
imageid = 'training_big/Truth/satImage_'+ '%.3d' % i
for j in range(8):
image_filename = imageid + "_rota"+str(np.int(j))+".png"
if os.path.isfile(image_filename):
img = mpimg.imread(image_filename)
gt_imgs.append(img)
else:
print ('File ' + image_filename + ' does not exist')
num_images = len(gt_imgs)
gt_patches = [img_crop(gt_imgs[i], IMG_PATCH_SIZE, IMG_PATCH_SIZE) for i in range(num_images)]
data = np.asarray([gt_patches[i][j] for i in range(len(gt_patches)) for j in range(len(gt_patches[i]))])
labels = np.asarray([value_to_class(np.mean(data[i])) for i in range(len(data))])
# Convert to dense 1-hot representation.
return labels.astype(np.float32)
##Return the error rate based on dense predictions and 1-hot labels.
Training_run.py 文件源码
python
阅读 33
收藏 0
点赞 0
评论 0
评论列表
文章目录