faster_rcnn.py 文件源码

python
阅读 20 收藏 0 点赞 0 评论 0

项目:pytorch_RFCN 作者: PureDiors 项目源码 文件源码
def proposal_target_layer(rpn_rois, gt_boxes, gt_ishard, dontcare_areas, num_classes):
        """
        ----------
        rpn_rois:  (1 x H x W x A, 5) [0, x1, y1, x2, y2]
        gt_boxes: (G, 5) [x1 ,y1 ,x2, y2, class] int
        # gt_ishard: (G, 1) {0 | 1} 1 indicates hard
        dontcare_areas: (D, 4) [ x1, y1, x2, y2]
        num_classes
        ----------
        Returns
        ----------
        rois: (1 x H x W x A, 5) [0, x1, y1, x2, y2]
        labels: (1 x H x W x A, 1) {0,1,...,_num_classes-1}
        bbox_targets: (1 x H x W x A, K x4) [dx1, dy1, dx2, dy2]
        bbox_inside_weights: (1 x H x W x A, Kx4) 0, 1 masks for the computing loss
        bbox_outside_weights: (1 x H x W x A, Kx4) 0, 1 masks for the computing loss
        """
        rpn_rois = rpn_rois.data.cpu().numpy()
        rois, labels, bbox_targets, bbox_inside_weights, bbox_outside_weights = \
            proposal_target_layer_py(rpn_rois, gt_boxes, gt_ishard, dontcare_areas, num_classes)
        # print labels.shape, bbox_targets.shape, bbox_inside_weights.shape
        rois = network.np_to_variable(rois, is_cuda=True)
        labels = network.np_to_variable(labels, is_cuda=True, dtype=torch.LongTensor)
        bbox_targets = network.np_to_variable(bbox_targets, is_cuda=True)
        bbox_inside_weights = network.np_to_variable(bbox_inside_weights, is_cuda=True)
        bbox_outside_weights = network.np_to_variable(bbox_outside_weights, is_cuda=True)

        return rois, labels, bbox_targets, bbox_inside_weights, bbox_outside_weights
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号