def __init__(self, bn=False):
super(VGG16, self).__init__()
self.conv1 = nn.Sequential(Conv2d(3, 64, 3, same_padding=True, bn=bn),
Conv2d(64, 64, 3, same_padding=True, bn=bn),
nn.MaxPool2d(2))
self.conv2 = nn.Sequential(Conv2d(64, 128, 3, same_padding=True, bn=bn),
Conv2d(128, 128, 3, same_padding=True, bn=bn),
nn.MaxPool2d(2))
network.set_trainable(self.conv1, requires_grad=False)
network.set_trainable(self.conv2, requires_grad=False)
self.conv3 = nn.Sequential(Conv2d(128, 256, 3, same_padding=True, bn=bn),
Conv2d(256, 256, 3, same_padding=True, bn=bn),
Conv2d(256, 256, 3, same_padding=True, bn=bn),
nn.MaxPool2d(2))
self.conv4 = nn.Sequential(Conv2d(256, 512, 3, same_padding=True, bn=bn),
Conv2d(512, 512, 3, same_padding=True, bn=bn),
Conv2d(512, 512, 3, same_padding=True, bn=bn),
nn.MaxPool2d(2))
self.conv5 = nn.Sequential(Conv2d(512, 512, 3, same_padding=True, bn=bn),
Conv2d(512, 512, 3, same_padding=True, bn=bn),
Conv2d(512, 512, 3, same_padding=True, bn=bn))
评论列表
文章目录