def basic_conv(n=3, epochs=60):
nets = [] # list of networks (for ensemble, if desired)
for j in range(n):
net = Network([
ConvPoolLayer(image_shape=(mini_batch_size, 1, 28, 28),
filter_shape=(20, 1, 5, 5), stride=(1, 1),
poolsize=(2, 2), activation_fn=relu),
ConvPoolLayer(image_shape=(mini_batch_size, 20, 14, 14),
filter_shape=(40, 20, 5, 5), stride=(1, 1),
poolsize=(2, 2), activation_fn=relu),
FullyConnectedLayer(n_in=40*7*7, n_out=100),
SoftmaxLayer(n_in=100, n_out=10)], mini_batch_size)
net.SGD(training_data, epochs, mini_batch_size, 0.1,
validation_data, test_data)
nets.append(net) # Add current network to list
return nets
评论列表
文章目录