def basic_conv(n=3, epochs=60):
nets = [] # list of networks (for ensemble, if desired)
for j in range(n):
net = Network([
ConvLayer(image_shape=(mini_batch_size, 1, 64, 512),
filter_shape=(20, 1, 3, 3), stride=(1, 1), activation_fn=relu),
ConvPoolLayer(image_shape=(mini_batch_size, 20, 64, 512),
filter_shape=(40, 20, 3, 3), stride=(1, 1),
poolsize=(2, 2), activation_fn=relu),
ConvPoolLayer(image_shape=(mini_batch_size, 40, 32, 256),
filter_shape=(80, 40, 3, 3), stride=(1, 1),
poolsize=(2, 2), activation_fn=relu),
FullyConnectedLayer(n_in=80*16*128, n_out=100),
SoftmaxLayer(n_in=100, n_out=2)],
mini_batch_size, 50)
net.SGD(train_data, epochs, mini_batch_size, 0.1,
validation_data, test_data, lmbda=0.0)
nets.append(net) # Add current network to list
return nets
评论列表
文章目录