average_pooling_2d.py 文件源码

python
阅读 20 收藏 0 点赞 0 评论 0

项目:chainer-deconv 作者: germanRos 项目源码 文件源码
def forward_gpu(self, x):
        if (cuda.cudnn_enabled and self.use_cudnn and
                pooling_2d._check_cudnn_acceptable_type(x[0].dtype)):
            return super(AveragePooling2D, self).forward_gpu(x)

        n, c, h, w = x[0].shape
        y_h = conv.get_conv_outsize(h, self.kh, self.sy, self.ph)
        y_w = conv.get_conv_outsize(w, self.kw, self.sx, self.pw)
        y = cuda.cupy.empty((n, c, y_h, y_w), dtype=x[0].dtype)
        coeff = 1. / (self.kh * self.kw)
        kern = cuda.elementwise(
            'raw T in, int32 h, int32 w,'
            'int32 out_h, int32 out_w, int32 kh, int32 kw,'
            'int32 sy, int32 sx, int32 ph, int32 pw, T coeff',
            'T out', '''
            int c0    = i / (out_h * out_w);
            int out_y = i / out_w % out_h;
            int out_x = i % out_w;
            int in_y_0 = max(0, out_y * sy - ph);
            int in_y_1 = min(h, out_y * sy + kh - ph);
            int in_x_0 = max(0, out_x * sx - pw);
            int in_x_1 = min(w, out_x * sx + kw - pw);

            T val = 0;
            for (int y = in_y_0; y < in_y_1; ++y) {
              int offset_y = w * (y + h * c0);
              for (int x = in_x_0; x < in_x_1; ++x) {
                val = val + in[x + offset_y];
              }
            }
            out = val * coeff;
            ''', 'avg_pool_fwd')
        kern(x[0].reduced_view(), h, w, y_h, y_w, self.kh, self.kw,
             self.sy, self.sx, self.ph, self.pw, coeff, y)
        return y,
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号