def __init__(self, in_channels, out_channels, ksize, stride=1, real=0, wscale=1.0):
super(ConvolutionRBM, self).__init__(
conv=L.Convolution2D(in_channels, out_channels, ksize, stride=stride, wscale=wscale),
)
# if gpu >= 0:
# cuda.check_cuda_available()
# xp = cuda.cupy # if gpu >= 0 else np
self.conv.add_param("a", in_channels) # dtype=xp.float32
self.conv.a.data.fill(0.)
self.in_channels = in_channels
self.out_channels = out_channels
self.ksize = ksize
self.real = real
self.rbm_train = False # default value is false
评论列表
文章目录