prelu.py 文件源码

python
阅读 15 收藏 0 点赞 0 评论 0

项目:chainer-deconv 作者: germanRos 项目源码 文件源码
def prelu(x, W):
    """Parametric ReLU function.

    It accepts two arguments: an input ``x`` and a weight array ``W``
    and computes the output as :math:`PReLU(x) = \\max(x, W*x)`,
    where :math:`*` is an elementwise multiplication for each sample in the
    batch.

    When the PReLU function is combined with two-dimensional convolution, the
    elements of parameter :math:`a` are typically shared across the same filter
    of different pixels. In order to support such usage, this function supports
    the shape of parameter array that indicates leading dimensions of input
    arrays except the batch dimension.

    For example :math:`W` has the shape of :math:`(2, 3, 4)`,
    :math:`x` must have the shape of :math:`(B, 2, 3, 4, S1, ..., SN)`
    where B is batchsize and the number of trailing S's
    is arbitrary non-negative integer.

    Args:
        x (~chainer.Variable): Input variable.
            Its first argument is assumed to be the minibatch dimension.
        W (~chainer.Variable): Weight variable.

    Returns:
        ~chainer.Variable: Output variable

    .. seealso:: :class:`~chainer.links.PReLU`

    """
    return PReLUFunction()(x, W)
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号