max_pooling_2d.py 文件源码

python
阅读 19 收藏 0 点赞 0 评论 0

项目:chainer-deconv 作者: germanRos 项目源码 文件源码
def backward_gpu(self, x, gy):
        if (cuda.cudnn_enabled and self.use_cudnn and
                pooling_2d._check_cudnn_acceptable_type(x[0].dtype)):
            return super(MaxPooling2D, self).backward_gpu(x, gy)

        n, c, h, w = x[0].shape
        y_h, y_w = gy[0].shape[2:]
        gx = cuda.cupy.empty_like(x[0])

        cuda.elementwise(
            'raw T gy, raw S indexes, int32 h, int32 w,'
            'int32 out_h, int32 out_w, int32 kh, int32 kw,'
            'int32 sy, int32 sx, int32 ph, int32 pw',
            'T gx',
            '''
               int c0 = i / (h * w);
               int y  = i / w % h + ph;
               int x  = i % w + pw;
               int out_y_0 = max(0,     (y - kh + sy) / sy);
               int out_y_1 = min(out_h, (y      + sy) / sy);
               int out_x_0 = max(0,     (x - kw + sx) / sx);
               int out_x_1 = min(out_w, (x      + sx) / sx);

               T val = 0;
               for (int out_y = out_y_0; out_y < out_y_1; ++out_y) {
                 int ky = y - out_y * sy;
                 for (int out_x = out_x_0; out_x < out_x_1; ++out_x) {
                   int kx = x - out_x * sx;
                   int offset = out_x + out_w * (out_y + out_h * c0);
                   if (indexes[offset] == kx + kw * ky) {
                     val = val + gy[offset];
                   }
                 }
               }
               gx = val;
            ''',
            'max_pool_bwd')(gy[0].reduced_view(), self.indexes.reduced_view(),
                            h, w, y_h, y_w, self.kh, self.kw,
                            self.sy, self.sx, self.ph, self.pw,
                            gx)
        return gx,
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号