def backward_gpu(self, inputs, grad_outputs):
cupy = cuda.cupy
x, t = inputs
if hasattr(self, 'y'):
y = self.y
else:
y = log_softmax._log_softmax(x, self.use_cudnn)
cupy.exp(y, out=y)
gloss = grad_outputs[0]
n_unit = t.size // len(t)
coeff = gloss * self._coeff
if self.class_weight is None:
gx = cuda.elementwise(
'T y, S t, raw T coeff, S n_channel, S n_unit',
'T gx',
'''
const int c = (i / n_unit % n_channel);
gx = (t == -1) ? 0 : (coeff[0] * (y - (c == t)));
''',
'softmax_crossent_bwd')(
y, cupy.expand_dims(t, 1), coeff, x.shape[1], n_unit)
else:
gx = cuda.elementwise(
'T y, raw T w, S t, raw T coeff, S n_channel, S n_unit',
'T gx',
'''
const int c = (i / n_unit % n_channel);
gx = t == -1 ? 0 : coeff[0] * (y - (c == t)) * w[t];
''',
'softmax_crossent_bwd')(
y, self.class_weight, cupy.expand_dims(t, 1), coeff,
x.shape[1], n_unit)
return gx, None
softmax_cross_entropy.py 文件源码
python
阅读 21
收藏 0
点赞 0
评论 0
评论列表
文章目录