softmax_cross_entropy.py 文件源码

python
阅读 21 收藏 0 点赞 0 评论 0

项目:chainer-deconv 作者: germanRos 项目源码 文件源码
def backward_gpu(self, inputs, grad_outputs):
        cupy = cuda.cupy
        x, t = inputs
        if hasattr(self, 'y'):
            y = self.y
        else:
            y = softmax_log(x, self.use_cudnn)
            cupy.exp(y, out=y)
        gloss = grad_outputs[0]
        n_unit = t.size // len(t)
        coeff = gloss * self._coeff
        gx = cuda.elementwise(
            'T y, S t, raw T coeff, S n_channel, S n_unit',
            'T gx',
            '''
               const int c = (i / n_unit % n_channel);
               gx = (t == -1) ? 0 : (coeff[0] * (y - (c == t)));
            ''',
            'softmax_crossent_bwd')(
                y, cupy.expand_dims(t, 1), coeff, x.shape[1], n_unit)
        return gx, None
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号