def evaluate(dataset, model, args):
sum_correct = 0.
sum_loss_data = xp.zeros(())
for i in six.moves.range(0, len(dataset), args.batchsize):
x_batch_seq = make_batch([dataset[i + j:i + j + 1]
for j in range(args.batchsize)], train=False)
x_batch_seq, pos, neg = x_batch_seq[:4], x_batch_seq[4], x_batch_seq[5]
loss, correct = model.solve(
x_batch_seq, pos, neg, train=False, variablize=True)
sum_loss_data += loss.data
sum_correct += correct
return cuda.to_cpu(sum_loss_data) / len(dataset), sum_correct
train_model.py 文件源码
python
阅读 29
收藏 0
点赞 0
评论 0
评论列表
文章目录