def build_referit_batches(setname, T, input_H, input_W):
# data directory
im_dir = './data/referit/images/'
mask_dir = './data/referit/mask/'
query_file = './data/referit/referit_query_' + setname + '.json'
vocab_file = './data/vocabulary_referit.txt'
# saving directory
data_folder = './referit/' + setname + '_batch/'
data_prefix = 'referit_' + setname
if not os.path.isdir(data_folder):
os.makedirs(data_folder)
# load annotations
query_dict = json.load(open(query_file))
im_list = query_dict.keys()
vocab_dict = text_processing.load_vocab_dict_from_file(vocab_file)
# collect training samples
samples = []
for n_im, name in enumerate(im_list):
im_name = name.split('_', 1)[0] + '.jpg'
mask_name = name + '.mat'
for sent in query_dict[name]:
samples.append((im_name, mask_name, sent))
# save batches to disk
num_batch = len(samples)
for n_batch in range(num_batch):
print('saving batch %d / %d' % (n_batch + 1, num_batch))
im_name, mask_name, sent = samples[n_batch]
im = skimage.io.imread(im_dir + im_name)
mask = load_gt_mask(mask_dir + mask_name).astype(np.float32)
if 'train' in setname:
im = skimage.img_as_ubyte(im_processing.resize_and_pad(im, input_H, input_W))
mask = im_processing.resize_and_pad(mask, input_H, input_W)
if im.ndim == 2:
im = np.tile(im[:, :, np.newaxis], (1, 1, 3))
text = text_processing.preprocess_sentence(sent, vocab_dict, T)
np.savez(file = data_folder + data_prefix + '_' + str(n_batch) + '.npz',
text_batch = text,
im_batch = im,
mask_batch = (mask > 0),
sent_batch = [sent])
评论列表
文章目录