def predict(self, X):
y_pred = []
for x in X:
dists = euclidean_distances([x], self.X)[0]
simi_m = 1 / (1 + dists)
nearest_com = self.y_comm[simi_m.argsort()[-self.k:]]
y_pred.append(self.mapping[Counter(nearest_com).most_common(1)[0][0]])
return np.array(y_pred)
评论列表
文章目录