def predict(self, X):
"""Predict ranking values for new data.
Parameters
----------
X : array, shape (n_test, n_features)
Test data
Returns
-------
y : array, shape (n_test,)
Ranking values
"""
n_features = X.shape[1]
if self.n_features != n_features:
raise ValueError("Expected %d dimensions, got %d"
% (self.n_features, n_features))
K = euclidean_distances(self.X, X, squared=True)
K /= self.denom
np.exp(K, K)
return np.sum(self.alpha[:, np.newaxis] * (K[:-1] - K[1:]), axis=0)
评论列表
文章目录