def search():
qry = request.args.get('query', '')
test = np.zeros((tfidf[0].shape))
keywords = []
for word in qry.split(' '):
# validate word
if len(word) <2 or word in stop_words:
continue
try:
idx = features.index(word)
test[0][idx] = 1
except ValueError, e:
pass
cosine_similarities = cosine_similarity(test, tfidf).flatten()
related_docs_indices = cosine_similarities.argsort()[:-100:-1] # TOP 100 results
MAX = 100
data = []
related_docs_indices = related_docs_indices[:MAX]
tag_map = {} # All tags and their counts
for img in indices[related_docs_indices]:
file_path = "/Users/smallya/workspace/Rekognition-personal-searchengine/" + img
labels = d_index[img]
word = qry.split(' ')[0]
data.append(file_path)
print related_docs_indices
return json.dumps(data)
server_query_images.py 文件源码
python
阅读 23
收藏 0
点赞 0
评论 0
评论列表
文章目录