def selecttop(CF, k):
"""
Finds cosine similarity between SC and Wi and returns index of top features
"""
NCF = np.zeros((CF.shape[1],CF.shape[1]))
for i in range(CF.shape[1]):
for j in range(CF.shape[1]):
if (CF[i,j]+CF[j,j]-CF[i,j]) !=0:
NCF[i,j]=CF[i,j]/(CF[i,j]+CF[j,j]-CF[i,j])
else:
NCF[i,j]=0
SC = np.zeros(CF.shape[1])
for i in range(CF.shape[1]):
SC[i] = np.sum(NCF[i,:])
print(np.isnan(SC).any())
print(np.isnan(CF).any())
cosim = cosine_similarity(SC,CF)
return (-cosim).argsort()[0][:int(k*CF.shape[1])]
#Loading CF matrix for each cluster
feature_selection_using_cmeans.py 文件源码
python
阅读 21
收藏 0
点赞 0
评论 0
评论列表
文章目录