def disambiguate_word(self, sentence, index):
super().disambiguate_word(sentence, index)
lemmas = self.lemmatize(sentence)
if index not in lemmas:
return
svector = self.sensegram(lemmas.values()) # sentence vector
if svector is None:
return
# map synset identifiers to the cosine similarity value
candidates = Counter({id: sim(svector, self.dense[id]).item(0)
for id in self.inventory.index[lemmas[index]]
if self.dense[id] is not None})
if not candidates:
return
for id, _ in candidates.most_common(1):
return id
评论列表
文章目录