def show_clusters_over_time(
task_output_path=None,
query_laps=[0, 1, 2, 10, 20, None],
nrows=2):
''' Show 2D elliptical contours overlaid on raw data.
'''
ncols = int(np.ceil(len(query_laps) // float(nrows)))
fig_handle, ax_handle_list = pylab.subplots(
figsize=(SMALL_FIG_SIZE[0] * ncols, SMALL_FIG_SIZE[1] * nrows),
nrows=nrows, ncols=ncols, sharex=True, sharey=True)
for plot_id, lap_val in enumerate(query_laps):
cur_model, lap_val = bnpy.load_model_at_lap(task_output_path, lap_val)
cur_ax_handle = ax_handle_list.flatten()[plot_id]
bnpy.viz.PlotComps.plotCompsFromHModel(
cur_model, dataset=dataset, ax_handle=cur_ax_handle)
cur_ax_handle.set_title("lap: %d" % lap_val)
cur_ax_handle.set_xlabel(dataset.column_names[0])
cur_ax_handle.set_ylabel(dataset.column_names[1])
cur_ax_handle.set_xlim(data_ax_h.get_xlim())
cur_ax_handle.set_ylim(data_ax_h.get_ylim())
pylab.tight_layout()
###############################################################################
#
# *DiagGauss* observation model
# -----------------------------
#
# Assume diagonal covariances.
#
# Start with too many clusters (K=20)
评论列表
文章目录