def show_top_words_over_time(
task_output_path=None,
vocabList=None,
query_laps=[0, 1, 2, 5, None],
ncols=10):
'''
'''
nrows = len(query_laps)
fig_handle, ax_handles_RC = pylab.subplots(
figsize=(SMALL_FIG_SIZE[0] * ncols, SMALL_FIG_SIZE[1] * nrows),
nrows=nrows, ncols=ncols, sharex=True, sharey=True)
for row_id, lap_val in enumerate(query_laps):
cur_model, lap_val = bnpy.load_model_at_lap(task_output_path, lap_val)
# Plot the current model
cur_ax_list = ax_handles_RC[row_id].flatten().tolist()
bnpy.viz.PrintTopics.plotCompsFromHModel(
cur_model,
vocabList=vocabList,
fontsize=9,
Ktop=7,
ax_list=cur_ax_list)
cur_ax_list[0].set_ylabel("lap: %d" % lap_val)
pylab.subplots_adjust(
wspace=0.04, hspace=0.1,
left=0.01, right=0.99, top=0.99, bottom=0.1)
pylab.tight_layout()
###############################################################################
#
# Show the topics over time
run-04-demo=topic_vb+proposals-model=hdp_topic+mult.py 文件源码
python
阅读 31
收藏 0
点赞 0
评论 0
评论列表
文章目录