tools.py 文件源码

python
阅读 19 收藏 0 点赞 0 评论 0

项目:learning-class-invariant-features 作者: sbelharbi 项目源码 文件源码
def plot_fig(values, title, x_str, y_str, path, best_iter, std_vals=None):
    """Plot some values.
    Input:
         values: list or numpy.ndarray of values to plot (y)
         title: string; the title of the plot.
         x_str: string; the name of the x axis.
         y_str: string; the name of the y axis.
         path: string; path where to save the figure.
         best_iter: integer. The epoch of the best iteration.
         std_val: List or numpy.ndarray of standad deviation values that
             corresponds to each value in 'values'.
    """
    floating = 6
    prec = "%." + str(floating) + "f"

    if best_iter >= 0:
        if isinstance(values, list):
            if best_iter >= len(values):
                best_iter = -1
        if isinstance(values, np.ndarray):
            if best_iter >= np.size:
                best_iter = -1

        v = str(prec % np.float(values[best_iter]))
    else:
        v = str(prec % np.float(values[-1]))
        best_iter = -1
    if best_iter == -1:
        best_iter = len(values)
    fig = plt.figure()
    plt.plot(
        values,
        label="lower val: " + v + " at " + str(best_iter) + " " +
        x_str)
    plt.xlabel(x_str)
    plt.ylabel(y_str)
    plt.title(title, fontsize=8)
    plt.legend(loc='upper right', fancybox=True, shadow=True, prop={'size': 8})
    plt.grid(True)
    fig.savefig(path, bbox_inches='tight')
    plt.close('all')
    del fig
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号