def gaussianlinearoffset_testing_data():
x = np.linspace(0, 5, 30)
x_nice=np.linspace(0, 5, 101)
mod_final,params = qudi_fitting.make_gaussianwithslope_model()
data=np.loadtxt("./../1D_shllow.csv")
data_noisy=data[:,1]
data_fit=data[:,3]
x=data[:,2]
update=dict()
update["slope"]={"min":-np.inf,"max":np.inf}
update["offset"]={"min":-np.inf,"max":np.inf}
update["sigma"]={"min":-np.inf,"max":np.inf}
update["center"]={"min":-np.inf,"max":np.inf}
update["amplitude"]={"min":-np.inf,"max":np.inf}
result=qudi_fitting.make_gaussianwithslope_fit(x_axis=x, data=data_noisy, add_params=update)
#
##
# gaus=gaussian(3,5)
# qudi_fitting.data_smooth = filters.convolve1d(qudi_fitting.data_noisy, gaus/gaus.sum(),mode='mirror')
plt.plot(x,data_noisy,label="data")
plt.plot(x,data_fit,"k",label="old fit")
plt.plot(x,result.init_fit,'-g',label='init')
plt.plot(x,result.best_fit,'-r',label='fit')
plt.legend()
plt.show()
print(result.fit_report())
评论列表
文章目录