def linear_testing():
x_axis = np.linspace(1, 51, 100)
x_nice = np.linspace(x_axis[0], x_axis[-1], 100)
mod, params = qudi_fitting.make_linear_model()
print('Parameters of the model', mod.param_names, ' with the independet variable', mod.independent_vars)
params['slope'].value = 2 # + abs(np.random.normal(0,1))
params['offset'].value = 50 #+ abs(np.random.normal(0, 200))
#print('\n', 'beta', params['beta'].value, '\n', 'lifetime',
#params['lifetime'].value)
data_noisy = (mod.eval(x=x_axis, params=params)
+ 10 * np.random.normal(size=x_axis.shape))
result = qudi_fitting.make_linear_fit(axis=x_axis, data=data_noisy, add_parameters=None)
plt.plot(x_axis, data_noisy, 'ob')
plt.plot(x_nice, mod.eval(x=x_nice, params=params), '-g')
print(result.fit_report())
plt.plot(x_axis, result.best_fit, '-r', linewidth=2.0)
plt.plot(x_axis, result.init_fit, '-y', linewidth=2.0)
plt.show()
评论列表
文章目录