def plot_confusion_matrix(cm, label_list, title='Confusion matrix', cmap=None):
from matplotlib import pylab
cm = np.asarray(cm, dtype=np.float32)
for i, row in enumerate(cm):
cm[i] = cm[i] / np.sum(cm[i])
#import matplotlib.pyplot as plt
#plt.ion()
pylab.clf()
pylab.matshow(cm, fignum=False, cmap='Blues', vmin=0, vmax=1.0)
ax = pylab.axes()
ax.set_xticks(range(len(label_list)))
ax.set_xticklabels(label_list, rotation='vertical')
ax.xaxis.set_ticks_position('bottom')
ax.set_yticks(range(len(label_list)))
ax.set_yticklabels(label_list)
pylab.title(title)
pylab.colorbar()
pylab.grid(False)
pylab.xlabel('Predicted class')
pylab.ylabel('True class')
pylab.grid(False)
pylab.savefig('test.jpg')
pylab.show()
评论列表
文章目录