def __init__(self, in_channels=1, n_classes=4):
init = chainer.initializers.HeNormal(scale=0.01)
super(VoxResNet, self).__init__(
conv1a=L.ConvolutionND(3, in_channels, 32, 3, pad=1, initialW=init),
bnorm1a=L.BatchNormalization(32),
conv1b=L.ConvolutionND(3, 32, 32, 3, pad=1, initialW=init),
bnorm1b=L.BatchNormalization(32),
conv1c=L.ConvolutionND(3, 32, 64, 3, stride=2, pad=1, initialW=init),
voxres2=VoxResModule(),
voxres3=VoxResModule(),
bnorm3=L.BatchNormalization(64),
conv4=L.ConvolutionND(3, 64, 64, 3, stride=2, pad=1, initialW=init),
voxres5=VoxResModule(),
voxres6=VoxResModule(),
bnorm6=L.BatchNormalization(64),
conv7=L.ConvolutionND(3, 64, 64, 3, stride=2, pad=1, initialW=init),
voxres8=VoxResModule(),
voxres9=VoxResModule(),
c1deconv=L.DeconvolutionND(3, 32, 32, 3, pad=1, initialW=init),
c1conv=L.ConvolutionND(3, 32, n_classes, 3, pad=1, initialW=init),
c2deconv=L.DeconvolutionND(3, 64, 64, 4, stride=2, pad=1, initialW=init),
c2conv=L.ConvolutionND(3, 64, n_classes, 3, pad=1, initialW=init),
c3deconv=L.DeconvolutionND(3, 64, 64, 6, stride=4, pad=1, initialW=init),
c3conv=L.ConvolutionND(3, 64, n_classes, 3, pad=1, initialW=init),
c4deconv=L.DeconvolutionND(3, 64, 64, 10, stride=8, pad=1, initialW=init),
c4conv=L.ConvolutionND(3, 64, n_classes, 3, pad=1, initialW=init)
)
评论列表
文章目录