def __init__(self, n_vocab_char, n_units, n_units_char):
super(RNN, self).__init__()
with self.init_scope():
self.embed = L.EmbedID(
n_vocab_char, n_units_char, initialW=I.Uniform(1. / n_units_char)) # word embedding
self.mid = L.LSTM(n_units_char, n_units_char) # the first LSTM layer
self.out = L.Linear(n_units_char, n_units) # the feed-forward output layer
train_word2vec_subword_chainer_input.py 文件源码
python
阅读 21
收藏 0
点赞 0
评论 0
评论列表
文章目录