fcn16s.py 文件源码

python
阅读 20 收藏 0 点赞 0 评论 0

项目:fcn 作者: wkentaro 项目源码 文件源码
def __init__(self, n_class=21):
        self.n_class = n_class
        kwargs = {
            'initialW': chainer.initializers.Zero(),
            'initial_bias': chainer.initializers.Zero(),
        }
        super(FCN16s, self).__init__()
        with self.init_scope():
            self.conv1_1 = L.Convolution2D(3, 64, 3, 1, 100, **kwargs)
            self.conv1_2 = L.Convolution2D(64, 64, 3, 1, 1, **kwargs)

            self.conv2_1 = L.Convolution2D(64, 128, 3, 1, 1, **kwargs)
            self.conv2_2 = L.Convolution2D(128, 128, 3, 1, 1, **kwargs)

            self.conv3_1 = L.Convolution2D(128, 256, 3, 1, 1, **kwargs)
            self.conv3_2 = L.Convolution2D(256, 256, 3, 1, 1, **kwargs)
            self.conv3_3 = L.Convolution2D(256, 256, 3, 1, 1, **kwargs)

            self.conv4_1 = L.Convolution2D(256, 512, 3, 1, 1, **kwargs)
            self.conv4_2 = L.Convolution2D(512, 512, 3, 1, 1, **kwargs)
            self.conv4_3 = L.Convolution2D(512, 512, 3, 1, 1, **kwargs)

            self.conv5_1 = L.Convolution2D(512, 512, 3, 1, 1, **kwargs)
            self.conv5_2 = L.Convolution2D(512, 512, 3, 1, 1, **kwargs)
            self.conv5_3 = L.Convolution2D(512, 512, 3, 1, 1, **kwargs)

            self.fc6 = L.Convolution2D(512, 4096, 7, 1, 0, **kwargs)
            self.fc7 = L.Convolution2D(4096, 4096, 1, 1, 0, **kwargs)

            self.score_fr = L.Convolution2D(4096, n_class, 1, 1, 0, **kwargs)
            self.score_pool4 = L.Convolution2D(512, n_class, 1, 1, 0, **kwargs)

            self.upscore2 = L.Deconvolution2D(
                n_class, n_class, 4, 2, nobias=True,
                initialW=initializers.UpsamplingDeconvWeight())
            self.upscore16 = L.Deconvolution2D(
                n_class, n_class, 32, 16, nobias=True,
                initialW=initializers.UpsamplingDeconvWeight())
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号