def __init__(self, x_data, y_data, feature, initmodel, gpu = -1):
self.N = 5000
self.N_test = 766
self.total = self.N + self.N_test
self.emotion_weight = {0: self.total / 716, 1: self.total / 325, 2: self.total / 1383, 3: self.total / 743, 4: self.total / 2066, 5: self.total / 74, 6: self.total / 17, 7: self.total / 35, 8: self.total / 404, 9: self.total / 3}
self.x_data = x_data.astype(np.float32)
self.x_data = np.vstack((self.x_data, self.x_data))
self.y_data = y_data.astype(np.int32)
self.y_data = np.vstack((self.y_data, self.y_data))
if feature == "IS2009":
self.input_layer = 384
elif feature == "IS2010":
self.input_layer = 1582
self.n_units = 256
self.output_layer = 10
self.model = L.Classifier(net.EmotionRecognitionVoice(self.input_layer, self.n_units, self.output_layer))
self.gpu = gpu
self.__set_cpu_or_gpu()
self.emotion = {0: "Anger", 1: "Happiness", 2: "Excited", 3: "Sadness", 4: "Frustration", 5: "Fear", 6: "Surprise", 7: "Other", 8: "Neutral state", 9: "Disgust"}
# Init/Resume
serializers.load_hdf5(initmodel, self.model)
predict_emotion.py 文件源码
python
阅读 23
收藏 0
点赞 0
评论 0
评论列表
文章目录