def __init__(self, in_channel, out_channel, filter_sizes=(3, 3), strides=(1, 1), pads=(1, 1)):
super(BN_Conv_BN_ReLU_Conv_BN, self).__init__()
modules = []
modules += [('bn1', L.BatchNormalization(in_channel))]
modules += [('conv1', L.Convolution2D(in_channel, out_channel, filter_sizes[0], strides[0], pads[0]))]
modules += [('bn2', L.BatchNormalization(out_channel))]
modules += [('conv2', L.Convolution2D(out_channel, out_channel, filter_sizes[1], strides[1], pads[1]))]
modules += [('bn3', L.BatchNormalization(out_channel))]
# register layers
[self.add_link(*link) for link in modules]
self.modules = modules
self.in_channel = in_channel
self.out_channel = out_channel
self.filter_sizes = filter_sizes
self.strides = strides
self.pads = pads
pyramidal_residual_networks.py 文件源码
python
阅读 18
收藏 0
点赞 0
评论 0
评论列表
文章目录