def __init__(
self, n_class, aspect_ratios,
initialW=None, initial_bias=None):
self.n_class = n_class
self.aspect_ratios = aspect_ratios
super(Multibox, self).__init__()
with self.init_scope():
self.loc = chainer.ChainList()
self.conf = chainer.ChainList()
if initialW is None:
initialW = initializers.LeCunUniform()
if initial_bias is None:
initial_bias = initializers.Zero()
init = {'initialW': initialW, 'initial_bias': initial_bias}
for ar in aspect_ratios:
n = (len(ar) + 1) * 2
self.loc.add_link(L.Convolution2D(n * 4, 3, pad=1, **init))
self.conf.add_link(L.Convolution2D(
n * self.n_class, 3, pad=1, **init))
评论列表
文章目录